DNA computing: the arrival of biological mathematics
نویسنده
چکیده
The field usually referred to as mathematical biology is a highly interdisciplinary area that lies at the intersection of mathematics and biology. Classical illustrations include the development of stochastic processes and statistical methods to solve problems in genetics and epidemiology. As the name used to describe work in this field indicates, with “biology” the noun, and “mathematical” the modifying adjective, the relationship between mathematics and biology has so far been one–way. Typically, mathematical results have emerged from or have been used to solve biological problems (see [34] for a comprehensive survey). In contrast, Leonard Adleman, [1], succeeded in solving an instance of the directed Hamiltonian path problem solely by manipulating DNA strings. This marks the first instance of the connection being reversed: a mathematical problem is the end toward which the tools of biology are used. To be semantically correct, instead of categorizing the research in DNA computing as belonging to mathematical biology, we should be employing the mirror–image term biological mathematics for the field born in November 1994. Despite the complexity of the technology involved, the idea behind biological mathematics is the simple observation that the following two processes, one biological and one mathematical, are analogous: (a) the very complex structure of a living being is the result of applying simple operations (copying, splicing, etc.) to initial information encoded in a DNA sequence, (b) the result f(w) of applying a computable function to an argument w can be obtained by applying a combination of basic simple functions to w (see Section 4 or [65] for details). If noticing this analogy were the only ingredient necessary to cook a computing DNA soup, we would have been playing computer games on our DNA
منابع مشابه
DNA computing : the arrival of biological
\Come forth into the light of things Let nature be your teacher." (Wordsworth, 72]) 1 Biological mathematics: the tables turned The eld usually referred to as mathematical biology is a highly interdisciplinary area that lies at the intersection of mathematics and biology. Classical illustrations include the development of stochastic processes and statistical methods to solve problems in genetic...
متن کاملDna Computing: Arrival of Biological Mathematics
\Come forth into the light of things Let nature be your teacher." (Wordsworth, 72]) 1 Biological mathematics: the tables turned The eld usually referred to as mathematical biology is a highly interdisciplinary area that lies at the intersection of mathematics and biology. Classical illustrations include the development of stochastic processes and statistical methods to solve problems in genetic...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملAnalysis of M/G/ 1 queueing model with state dependent arrival and vacation
This investigation deals with single server queueing system wherein the arrival of the units follow Poisson process with varying arrival rates in different states and the service time of the units is arbitrary (general) distributed. The server may take a vacation of a fixed duration or may continue to be available in the system for next service. Using the probability argument, we construct the ...
متن کاملStudy of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997